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METHODOLOGY

DeepCob: precise and high‑throughput 
analysis of maize cob geometry using deep 
learning with an application in genebank 
phenomics
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Abstract 

Background:  Maize cobs are an important component of crop yield that exhibit a high diversity in size, shape 
and color in native landraces and modern varieties. Various phenotyping approaches were developed to measure 
maize cob parameters in a high throughput fashion. More recently, deep learning methods like convolutional neural 
networks (CNNs) became available and were shown to be highly useful for high-throughput plant phenotyping. We 
aimed at comparing classical image segmentation with deep learning methods for maize cob image segmentation 
and phenotyping using a large image dataset of native maize landrace diversity from Peru.

Results:  Comparison of three image analysis methods showed that a Mask R-CNN trained on a diverse set of maize 
cob images was highly superior to classical image analysis using the Felzenszwalb-Huttenlocher algorithm and a 
Window-based CNN due to its robustness to image quality and object segmentation accuracy ( r = 0.99 ). We inte-
grated Mask R-CNN into a high-throughput pipeline to segment both maize cobs and rulers in images and perform 
an automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity, asymmetry, 
aspect ratio and average values of red, green and blue color channels for cob color. Statistical analysis identified key 
training parameters for efficient iterative model updating. We also show that a small number of 10–20 images is suf-
ficient to update the initial Mask R-CNN model to process new types of cob images. To demonstrate an application of 
the pipeline we analyzed phenotypic variation in 19,867 maize cobs extracted from 3449 images of 2484 accessions 
from the maize genebank of Peru to identify phenotypically homogeneous and heterogeneous genebank accessions 
using multivariate clustering.

Conclusions:  Single Mask R-CNN model and associated analysis pipeline are widely applicable tools for maize cob 
phenotyping in contexts like genebank phenomics or plant breeding.

Keywords:  Maize cob, Deep learning, Genebank Phenomics, Object detection, High-throughput plant phenotyping, 
Image analysis, Genetic resources
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Background
High-throughput precision phenotyping of plant traits 
is rapidly becoming an integral part of plant research, 
plant breeding, and crop production [4]. This devel-
opment complements the rapid advances in genomic 
methods that, when combined with phenotyping, enable 
rapid, accurate, and efficient analysis of plant traits and 
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the interaction of plants with their environment [65]. 
However, for many traits of interest, plant phenotyping 
is still labor intensive or technically challenging. Such a 
bottleneck in phenotyping [17] limits progress in under-
standing the relationship between genotype and phe-
notype, which is a problem for plant breeding [24]. The 
phenotyping bottleneck is being addressed by phenom-
ics platforms that integrate high-throughput automated 
phenotyping with analysis software to obtain accurate 
measurements of phenotypic traits [28, 46]. Existing phe-
nomics platforms cover multiple spatial and temporal 
scales and incorporate technologies such as RGB image 
analysis, near-infrared spectroscopy (NIRS), or NMR 
spectroscopy [31, 32, 60]. The rapid and large-scale gen-
eration of diverse phenotypic data requires automated 
analysis to convert the output of phenotyping platforms 
into meaningful information such as measures of bio-
logical quantities [11, 22]. Thus, high-throughput pipe-
lines with accurate computational analysis will realize the 
potential of plant phenomics by overcoming the pheno-
typing bottleneck.

A widely used method for plant phenotyping is image 
segmentation and shape analysis using geometric mor-
phometrics [70]. Images are captured in standardized 
environments and then analyzed either manually or 
automatically using image annotation methods to seg-
ment images and label objects. The key challenge in auto-
mated image analysis is the detection and segmentation 
of relevant objects. Traditionally, object detection in 
computer vision (CV) has been performed using multi-
variate algorithms that detect edges, for example. Most 
existing pipelines using classical image analysis in plant 
phenotyping are species-dependent and assume homo-
geneous plant material and standardized images [40, 
45, 68]. Another disadvantage of classical image analy-
sis methods is low accuracy and specificity when image 
quality is low or background noise is present. Therefore, 
the optimal parameters for image segmentation often 
need to be fine-tuned manually through experimenta-
tion. In recent years, machine learning approaches have 
revolutionized many areas of CV such as object recog-
nition [37] and are superior to classical CV methods in 
many applications [48]. The success of machine learning 
in image analysis can be attributed to the evolution of 
neural networks from simple architectures to advanced 
feature-extracting convolutional neural networks (CNNs) 
[64]. The complexity of CNNs could be exploited because 
deep learning algorithms offered new and improved 
training approaches for these more complex method net-
works. Another advantage of machine learning methods 
is their robustness to variable image backgrounds and 
image qualities when model training is based on a suf-
ficiently diverse set of training images. Through their 

capability to learn from small training datasets, these 
deep learning techniques have a huge potential to carry 
out few-shot learning in agriculture, thereby saving work 
effort and costs in generating large real-world training 
datasets [5, 67]. Although CNN have been very success-
ful in general image classification and segmentation, their 
application in plant phenotyping is still limited to a few 
species and features. Current applications include plant 
pathogen detection, organ and feature quantification, and 
phenological analysis [16, 31, 62].

Maize cobs can be described with few geometric shape 
and color parameters. Since the size and shape of maize 
cobs are important yield components with a high herit-
ability and are correlated with total yield [43, 53], they 
are potentially useful traits for selection in breeding pro-
grams. High throughput phenotyping approaches are also 
useful for characterizing native diversity of crop plants 
to facilitate their conservation or utilize them as genetic 
resources [41, 47]. Maize is an excellent example to dem-
onstrate the usefulness of high throughput phenotyp-
ing because of its high genetic and phenotypic diversity, 
which originated since its domestication in South-Cen-
tral Mexico about 9,000  years ago [27, 34, 42]. A high 
environmental variation within its cultivation range in 
combination with artificial selection by humans resulted 
in many phenotypically divergent landraces [8, 69]. Since 
maize is one of the most important crops worldwide, 
large collections of its native diversity were established in 
ex situ genebanks, whose genetic and phenotypic diver-
sity are now being characterized [56]. This unique pool 
of genetic and phenotypic variation is threatened by 
genetic erosion [23, 49–51] and understanding its role in 
environmental and agronomic adaptation is essential to 
identify valuable genetic resources and develop targeted 
conservation strategies.

In the context of native maize diversity we demonstrate 
the usefulness of a CNN-based deep learning model 
implemented in a robust and widely applicable analysis 
pipeline for recognizing, semantic labeling and auto-
mated measurements of maize cobs in RGB images for 
large scale plant phenotyping. Highly variable traits like 
cob length, kernel color and number were used for classi-
fication of the native maize diversity of Peru ([52] and are 
useful for the characterization of maize genetic resources 
because cobs are easily stored and field collections can be 
analyzed at a later time point. We demonstrate the appli-
cation of image segmentation to photographs of native 
maize diversity in Peru. So far, cob traits have been stud-
ied for small sets of Peruvian landraces, only such as cob 
diameter in 96 accessions of 12 Peruvian maize landraces 
[2], or cob diameter in 59 accessions of 9 highland lan-
draces ([49, 50]. Here we use image analysis to obtain 
cob parameters from 2,484 accessions of the Peruvian 
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maize genebank hosted at Universidad Nacional Agraria 
La Molina (UNALM) by automated image analysis. We 
also show that the DeepCob image analysis pipeline can 
be easily expanded to different image types of maize cobs 
such as segregating populations resulting from genetic 
crosses.

Results
Comparison of image segmentation methods
To address large-scale segmentation of maize cobs, we 
compared three different image analysis methods for 
their specificity and accuracy in detecting and segment-
ing both maize cobs and measurement rulers in RGB 
images. Correlations between true and derived values 
for cob length and diameter show that Mask R-CNN 
far outperformed the classical Felzenszwalb-Hutten-
locher image segmentation algorithm and a window-
based CNN (Window-CNN) (Fig.  1). For two sets of 
old (ImgOld) and new (ImgNew) maize cob images (see 
Materials and Methods), Mask R-CNN achieved cor-
relations of 0.99 and 1.00, respectively, while correlation 
coefficients ranged from 0.14 to 0.93 with Felzenszwalb-
Huttenlocher segmentation and from 0.03 to 0.42 with 
Window-CNN, respectively. Since Mask R-CNN was 

strongly superior in accuracy to the other two segmen-
tation methods, we restricted all further analyses to this 
method only.

Parameter optimization of Mask R‑CNN
We first describe parameter optimizations during train-
ing of the Mask R-CNN model based on the old (ImgOld) 
and new (ImgNew) maize cob image data from the Peru-
vian maize genebank. A total of 90 models were trained, 
differing by the parameters learning rate, total epochs, 
epochs.m, mask loss weight, monitor, minimask (see Mate-
rial and Methods), using a small (200) and a large (1,000) 
set of randomly selected images as training data. The 
accuracy of Mask R-CNN detection depends strongly on 
model parameters, as AP@[0.5:0.95] values for all models 
ranged from 5.57 to 86.74 for 200 images and from 10.49 
to 84.31 for 1,000 images for model training (Additional 
file 1: Table S1). Among all 90 models, M104 was the best 
model for maize cob and ruler segmentation with a score 
of 86.74, followed by models M101, M107, and M124 
with scores of 86.56. All four models were trained with 
the small image dataset.

Given the high variation of the scores, we evaluated the 
contribution of each training parameter to this variation 

a b

c d

Fig. 1  Pearson correlation between true and estimated cob length for three image segmentation methods (Felzenszwalb-Huttenlocher 
segmentation,Window-CNN,Mask R-CNN). True (x-axis) and estimated (y-axis) mean cob length (a, c) and diameter (b, d) per image with each 
approach, split by dataset, ImgOld and ImgNew are shown. In all cases, MaskRCNN achieves the highest correlation of at least 0.99 with the true 
values
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with an ANOVA (Table 1). There is an interaction effect 
between the size of the training set and the total num-
ber of epochs trained, as well as an effect of a minimask, 
which is often used as a resizing step of the object mask 
before fitting it to the deep learning model. The other 
training parameters learning rate, monitoring, epochs.m 
(mode to train only heads or all layers), and mask loss 
weight had no effect on the AP@[0.5:0.95] value. The 
lsmeans show that training without minimask leads to 
higher scores and more accurate object detection. Table 1 
shows an interaction between the size of the training set 
and the total number of epochs. Model training with 
200 images over 200 epochs was not significantly differ-
ent from training over 50 epochs or from model training 
with 1,000 images over 200 epochs at p < 0.05 . With the 
same number of training epochs, we did not observe an 
advantage 1,000 over 200 training images. In contrast, 
model training over 15 epochs only resulted in lower 
AP@[0.5:0.95] values.

Loss behavior of Mask R‑CNN during model training
Monitoring loss functions of model components (classes, 
masks, boxes) during model training identifies compo-
nents that need further adjustments to achieve full opti-
mization. Compared to the other components, mask loss 
contributed the highest proportion to all losses (Fig.  2), 
which indicates that the most challenging process in 
model training and optimization is segmentation by cre-
ating masks for cobs and rulers. The training run with the 
parameter combination generating the best model M104 
in epoch 95 shows a decreasing training and validation 
loss during the first 100 epochs and a tendency for over-
fitting in additional epochs (Fig. 2A, B). This suggests that 
model training on the Peruvian maize images over 100 
epochs is sufficient. Other parameter combinations like 
M109 (Fig.  2c) exhibit overfitting with a tenfold higher 

validation loss than M104. Instead of learning patterns, 
the model memorizes training data, which increases the 
validation loss and results in weak predictions for object 
detection and image segmentation.

Visualization of feature maps generated by Mask R‑CNN
Although neural networks are considered a "black box" 
method, a feature map visualization of selected layers 
shows interpretable features of trained networks. In a 
feature map, high activations correspond to high feature 
recognition activity in that area, as shown in Fig. 3A for 
the best model M104. Over several successive CNN lay-
ers, the cob shape is increasingly well detected until, in 
the last layer (res4a) the feature map indicates a robust 
distinction between foreground with the cob and ruler 
objects and the background. High activations occur at 
the top of the cobs (Fig. 3A, res4g layer), which may con-
tribute to localization. Because the cobs were oriented 
according to their lower (apical) end in the images, it 
may be more difficult for the model to detect the upper 
edges, which are variable in height. Overall, the feature 
maps show that the network learned specific features of 
the maize cob and the image background.

The Mask R-CNN detection process can be visualized 
by its main steps, which we demonstrate using the best 
model (Fig.  3B). The top 50 anchors are output by the 
Region Proposal Network (RPN) and the anchored boxes 
are then further refined. In the early stages of refinement, 
all boxes already contain a cob or ruler, but boxes con-
taining the same image element have different lengths 
and widths. In later stages, the boxes are further reduced 
in size and refined around the cobs and rulers until, in 
the final stage, mask recognition provides accurate-fitting 
masks, bounding boxes, and class labels around each rec-
ognized cob and ruler.

Table 1  Lsmeans of AP@[.5:.95] in the ANOVA analysis for Mask R-CNN model parameters minimask and the interaction of training set 
size x total number of epochs 

Mean values that share a common letter are not significantly different (p < 0.05). Individual p-values of comparisons are in Additional file 1: Tables S2 and S3

Minimask Lsmeans

No 79.95a

Yes 48.17b

Size of training set Total number of epochs Lsmeans

200 200 72.63a

200 50 69.97ab

1000 50 64.37bc

1000 200 64.17abc

1000 15 62.38bc

200 15 56.51c
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The best Mask R-CNN model for detection and seg-
mentation of both maize cobs and rulers is very robust 
to image quality and variation. This robustness is evident 
from a representative subset of ImgOld and ImgNew 
images that we did not use for training and show a high 
variation in image quality, backgrounds and diversity of 
maize cobs (Fig.  4). Both the identification of bound-
ing boxes and object segmentation are highly accurate 
regardless of image variability. The only inaccuracies in 
the location of bounding boxes or masks occur at the 
bottom edge of cobs.

Maize model updating on additional image datasets
To extend the use of our model for images of maize 
cobs taken under different circumstances and in dif-
ferent environments (e.g., in the field), we investigated 
whether updating our maize model for new image types 
with additional image data included in the ImgCross 
and ImgDiv data sufficiently improves the segmentation 
accuracy of cob and ruler elements compared to a full 
training process starting again with the standard COCO 
model. We used the best maize model trained on ImgOld 
and ImgNew data (model M104, hereafter maize model), 
which is pre-trained only on the cob and ruler classes. In 

addition to updating to our maize model, we updated the 
COCO model with the same images. In this context, the 
COCO model serves as a validation, as it is a standard 
mask-R CNN model trained on the COCO image data 
[38], which contains 80 annotated object classes in 330 K 
images.

Overall, model updating using training images sig-
nificantly improved the AP@[0.5:0.95] scores of the 
additional image datasets (Fig.  5), with scores differing 
between image sets, initial models, and training set sizes. 
With standard COCO model weights (Fig.  6a, c), AP@
[0.5:0.95] scores were initially low, down to a value of 0, 
in which neither cobs nor rulers were detected. How-
ever, scores increased rapidly during up to 0.7 during the 
first 30 epochs. In contrast, with the pre-trained weights 
(Fig. 5b, d) of the maize model AP@[0.5:0.95] scores were 
already high during the first epochs and then rapidly 
improved to higher values than with the COCO model. 
Therefore, object segmentation using additional maize 
cob image data was significantly better with the pre-
trained maize model from the beginning and throughout 
the model update.

Given the high variation in these scores, we determined 
the contribution of the three factors starting model, 

a b

c

Fig. 2  Mask R-CNN training and validation losses during training for 200 epochs on ImgOld and ImgNew maize cob images from the Peruvian 
genebank. a Loss curves leading to the best model M104 in epoch 95. c With the same scaling on the y-axis, parameter combination M109 shows 
substantial overfitting as indicated by much higher validation losses resulting in an inferior model based on AP@[.5:.95]. b Loss curves of M104 with 
a zoomed scale on the y-axis, highlighting the mask loss as highest contributor to overall loss, indicating that masks are most difficult to optimize. 
Other losses, like class loss or bounding box loss, are of minor importance
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training set size and training data set to the observed 
variation in AP@[0.5:0.95] scores with an ANOVA. In 
this analysis, the interactions between dataset and start-
ing model were significant. By accounting for the lsmeans 
of these significant interactions (Table 2), updating of the 
pre-trained maize model than of the COCO model was 
better in both data sets. With respect to traing set sizes, 
AP@[0.5:0.95] scores of maize model were essentially the 
same for different sizes and were always higher than of 
the COCO model. In summary, there is a clear advantage 
in updating a pre-trained maize model over the COCO 
model for cob segmentation with diverse maize cob 
image sets.

Descriptive data obtained from cob image segmentation
To demonstrate that the Mask R-CNN model is suitable 
for large-scale and accurate image analysis, we present 
the results of a descriptive analysis of 19,867 maize cobs 
that were identified and extracted from the complete set 
of images from the Peruvian maize genebank, i.e., the 
ImgOld and ImgNew data. Here, we focus on the ques-
tion whether image analysis identifies genebank acces-
sions which are highly heterogeneous with respect to cob 
traits by using measures of trait variation and multivari-
ate clustering algorithms.

Our goal was to identify heterogeneous genebank 
accessions that either harbor a high level of genetic varia-
tion or are admixed because of co-cultivation of different 
landraces on farmers fields or mix-ups during genebank 
storage. We therefore analysed variation of cob param-
eters within images to identify genebank accessions with 
a high phenotypic diversity of cobs using two different 
multivariate analysis methods to test the robustness of 
the classification.

The first approach consisted of calculating a Z-score of 
each cob in an image as measure of deviation from the 
mean of the image (Within image Z-scores), clustering 
these scores with a PCA, followed by applying CLARA 
and determining the optimal number of clusters with 
the average silhouette method. The second approach 
consisted of calculating a centered and scaled standard 
deviation of cob parameters for each image, applying a 
PCA to the values of all images, clustering with k-means 
and determining the optimal cluster number with the gap 
statistic. With both approaches, the best-fitting numbers 
of clusters was k = 2 with a clear separation between 
clusters and little overlap along the first principal com-
ponent (Fig. 7). The distribution of trait values between 
the two groups shows that they differ mainly by the 
three RGB colors and cob length (in the Z-score analysis 

Fig. 3  Feature map visualizations and improved segmentation throughout learning A Examples of feature map visualizations on resnet-101 (for 
an explanation, see Materials and methods). a An early layer shows activations around the cob shape and the ruler on the right. b The next layer 
shows more clarified cob shapes with activations mainly at the top and bottom of cobs. c A later layer shows different activations inside the cob. 
d The latest layer masks the background very well masked from cobs and rulers. B Visualization of the main detection procedure of Mask R-CNN. a 
The top 50 anchors obtained from the region proposal network (RPN), after non-max suppression. b, c, d show further bounding box refinement 
and e shows the output of the detection network: mask prediction, bounding box prediction and class label. All images are quadratic with a black 
padding because images are internally resized to a quadratic scale for more efficient matrix multiplication operations
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only) suggesting that cob color tends to more variable 
than most morphological traits within genebank acces-
sions. Additional file  1: Figure S1 shows images of gen-
ebank accessions classified as homogeneous and variable, 
respectively.

Discussion
Our comparison of three image segmentation methods 
showed Mask R-CNN to be superior to the classic image 
analysis method Felzenszwalb-Huttenlocher segmenta-
tion and Window-CNN for maize cob detection and seg-
mentation. Given the recent success of Mask R-CNN for 
image segmentation in medicine or robotics, its applica-
tion for plant phenotyping is highly promising as dem-
onstrated in strawberry fruit detection for harvesting 
robots [72], orange fruit detection [18], pomegranate 
tree detection [73], disease monitoring in wheat [59], and 
seed analysis in rice and soybean [30, 71]. Here we pre-
sent another application of Mask R-CNN for maize cob 
instance segmentation and quantitative phenotyping in 
the context of genebank phenomics. In contrast to previ-
ous studies we performed a statistical analysis on the rel-
ative contribution of Mask R-CNN training parameters, 

and our application is based on more diverse and larger 
training image sets of 200 and 1,000 images. Finally, we 
propose a simple and rapid model updating scheme for 
applying the method on different maize cob image sets 
to make this method widely useful for cob phenotyp-
ing. The provided manuals offer a simple application and 
update of the deep learning model on custom maize cob 
datasets.

Advantages and limitations of the method for few‑shot 
learning in agriculture
After optimizing various model parameters, the final 
Mask R-CNN model detected and segmented cobs and 
rulers very reliably with a very high AP@[.5 : .95] score 
of 87.7, enabling accurate and fast extraction of cob fea-
tures. Since such scores have not been reported for exist-
ing pipelines for maize cob annotation because they are 
mainly used for deep learning, we compared them to 
other contexts of image analysis and plant phenotyp-
ing where these parameters are available. Our score is 
higher than the original Mask R-CNN implementation 
on COCO with Cityscapes images [55], possibly due to 
a much smaller number of classes (2 versus 80) in our 

Fig. 4  Examples of detection and segmentation performance on a representative example of diverse images from the Peruvian maize landrace 
ImgOld (a) and ImgNew (b) image sets including different cob and background colors



Page 8 of 19Kienbaum et al. Plant Methods           (2021) 17:91 

dataset. Depending on the backend network, the score 
of the original implementation ranged between 26.6 
and 37.1. The maize cob score is also greater than 57.5 
in the test set for pomegranate tree detection [73] and 
comparable to a score of 89.85 for strawberry fruit detec-
tion [72]. Compared to such Mask R-CNN implementa-
tions on other crops, our method reached similar or even 
higher accuracy by requiring substantially less images. 
Only a small dataset of 200 images was required for the 
initial training, and only a few images (10–20) for model 
updating on a custom image set are needed. Thereby, this 
method has the potential to contribute to few-shot learn-
ing in agriculture if applied to other crops or plant phe-
notypes. By releasing relevant Mask R-CNN parameters 
for fine-tuning the model to a specific crop like maize 
cobs, the development of standard Mask R-CNN models 
for different crops or plant phenotypes is facilitated by 
this work. A unique Mask R-CNN model covering many 
crops and plant phenotypes is unrealistic in short-term 
due to the very different plant features and unavailability 

of large annotated image data sets. However, such a goal 
could be created in an open source project with a large 
and diverse set of annotated crop images and extensive 
model training, similar to the Model Zoo project (https://​
model​zoo.​co/). Although both maize cob and ruler 
detection and segmentation performed well, we observed 
minor inaccuracies in some masks. A larger training set 
did not improve precision and eliminate these inaccura-
cies, as the resolution of the mask branch in the Mask 
R-CNN framework may be too low, which could be 
improved by adding a convolutional layer of, for example, 
56 × 56 pixel instead of the usual 28 × 28 pixel at the cost 
of longer computing time.

Mask R-CNN achieved higher correlation coeffi-
cients between true and predicted cob measurements 
than existing image analysis methods, which reported 
coefficients of r = 0.99 for cob length, r = 0.97 for cob 
diameter [40] and r = 0.93 for cob diameter [45]. Our 
Mask R-CNN achieved coefficients of r = 0.99 for cob 
diameter and r = 1 for cob length. Such correlations 

a b

c d

Fig. 5  Improvement of AP@[.5:.95] scores during 50 epochs of model updating to different maize cob image datasets (a, b: ImgCross; c, d: ImgDiv). 
Updating on the COCO initial weights/COCO model (a, c) in comparison to updating on the pre-trained maize model (b, d) depends on different 
amounts of training images, namely 10, 20, 30, 40 or 50 images

https://modelzoo.co/
https://modelzoo.co/


Page 9 of 19Kienbaum et al. Plant Methods           (2021) 17:91 	

a

b

c

Fig. 6  Detection of cob and ruler after model updating the pretained maize model with different image datasets. a Updating with 10 training 
images from ImgCross. The original maize model detected only one cob (epoch 0). After one epoch of model updating both cobs were accurately 
segmented and after epoch 12 the different ruler element was detected. Photo credit: K. Schmid, University of Hohenheim. b Segmentation of 
various genebank images after updating for 25 epochs with 20 training images from ImgDiv. Photo credits: https://​nexus​media​news.​com/​droug​
ht-​is-​cripp​ling-​small-​farme​rs-​in-​mexico-​with-​conse​quenc​es-​for-​every​one-​else-​photos-​73b35​a01e4​dd (Left) https://​www.​ars.​usda.​gov/​ARSUs​erFil​
es/​50301​000/​Races_​of_​Maize/​RoM_​Parag​uay_0_​Book.​pdf (Center) Right: CIMMYT, https://​flic.​kr/p/​9h9X6B. All photos are available under a Creative 
Commons License. c Segmentation of cobs and rulers in post-harvest images of the Swiss Rheintaler Ribelmais landrace with the best model from 
ImgCross without updating on these images. Photo credit: Benedikt Kogler, Verein Rheintaler Ribelmais e.V., Switzerland

https://nexusmedianews.com/drought-is-crippling-small-farmers-in-mexico-with-consequences-for-everyone-else-photos-73b35a01e4dd
https://nexusmedianews.com/drought-is-crippling-small-farmers-in-mexico-with-consequences-for-everyone-else-photos-73b35a01e4dd
https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/RoM_Paraguay_0_Book.pdf
https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/RoM_Paraguay_0_Book.pdf
https://flic.kr/p/9h9X6B
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Table 2  Lsmeans of AP@[.5:.95] score of the significant interactions for model updating, dataset x starting model and starting model x 
training set size

Means sharing a common letter are not significantly different (p < 0.05)

Dataset Starting model Lsmeans

ImgDiv Maize 75.40a

ImgCross Maize 71.04b

ImgCross COCO 62.74c

ImgDiv COCO 61.86c

Starting model Dataset Lsmeans

Maize 40 74.11a

Maize 50 74.06a

Maize 30 73.48a

Maize 10 72.40a

Maize 20 72.03a

COCO 50 67.54b

COCO 40 65.39b

COCO 20 61.71c

COCO 30 61.67c

COCO 10 55.19d

Fig. 7  Clustering of individual images by their heterogeneity of maize cob traits within images. Clustering approaches with the extracted cob traits. 
A First two principal components showing the average color of individual cobs ( n = 19, 867 cobs) (left) and average cob color per analyzed image 
( n = 3, 302 images) (right). The colors of each dot reflect the average RGB values (i.e., the color) of each cob, or image, respectively. B PCA plots 
showing clusters identified with the multivariate clustering methods CLARA (left) and k-means clustering (right). C Distribution of cob traits within 
each method and cluster
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are a remarkable improvement considering that they 
were obtained with the highly diverse and inhomo-
geneous ImgOld and ImgNew image data (Fig.  8 and 
Additional file  1: Table  S4), whereas previous stud-
ies used more homogeneous images with respect to 
color and shape of elite maize hybrid breeding mate-
rial taken with uniform backgrounds. The high accu-
racy of Mask R-CNN indicates the advantage of the 
learning on specific cob and ruler patterns in deep 
learning.

Another feature of our automated pipeline is the 
simultaneous segmentation of cob and ruler, which 
allows pixel measurements to be instantly converted 
to centimeters and morphological measurements 
to be returned. Such an approach was also used by 
Makanza et al. [40], but no details on ruler measure-
ments or accuracy of ruler detection were provided. 
The ability to detect rulers and cobs simultaneously 
is advantageous in a context where professional 
imaging equipment is not available, such as agricul-
tural fields.

Selection of training parameters to reduce annotation 
and training workload
Our Mask R-CNN workflow consists of annotating the 
data, training or updating the model, and running the 
pipeline to automatically extract features from the maize 
cobs. The most time-consuming and resource-intensive 
step was the manual annotation of cob images to provide 
labeled images for training, which took several minutes 
per image, but can be accelerated by supporting soft-
ware [12]. In the model training step, model weights are 
automatically learned from the annotated images in an 
automated way, which is a major advantage over existing 
maize cob detection pipelines that require manual fine-
tuning of parameters for different image datasets using 
operations such as thresholding, filtering, water-shed-
ding, edge detection, corner detection, blurring and bina-
rization [40, 45, 68].

Statistical analysis of each Mask R-CNN training 
parameters helps to reduce the amount of annotation 
and fine-tuning required (Tables  1 and 2). For example, 
there was no significant improvement on a large training 

Fig. 8  Variability of image properties among the complete dataset (containing ImgOld and ImgNew)
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set of 1,000 compared to 200 images, as learning on and 
segmenting of two object classes only seems to be a sim-
ple task for Mask R-CNN. Therefore, we do not expect 
further model improvement on a set of more than 1,000 
images  and  the significant amount of work involved in 
manual image annotation can be reduced if no more 
than 200 images need to be annotated. Since many train-
ing parameters did not have a strong impact on the final 
model result, this suggests that such parameters do 
not need to be fine-tuned. For example, using all layers 
instead of only the network heads (only the last part of 
the network involving the fully-connected layers) did not 
improve significantly the final detection result. Training 
image datasets with only a few object classes on network 
heads greatly reduces the runtime for model training.

Technical equipment and computational resources 
for deep learning
The robustness of the Mask R-CNN approach imposes 
only simple requirements for creating images for both 
training and application purposes. RGB images taken 
with a standard camera are sufficient. In contrast, neu-
ral network training requires significant computational 
resources and is best performed on a high performance 
computing cluster or on GPUs with significant amounts 
of RAM. Training of the 90 different models (Additional 
file 1: Table S6) was executed over 3 days, using 4 paral-
lel GPUs on a dedicated GPU cluster. However, once the 
maize model is trained, model updating with only a few 
annotated images from new maize image data does not 
require a high performance computing infrastructure 
anymore, as in our case updating with 20 images was 
achieved in less than an hour on a normal workstation 
with 16 CPU threads and 64 GB RAM.

Model updating with the pre-trained maize model on 
two different image datasets ImgCross and ImgDiv sig-
nificantly improved the AP@[.5 : .95] score for cob and 
ruler segmentation on the new images. The improve-
ment was achieved despite additional features in the new 
image data that were absent from the training data. New 
features include rotated images, cobs in different orien-
tation (horizontal instead of vertical) and different back-
grounds (Fig.  6). The advantage of a pre-trained maize 
model over the standard COCO model was independent 
of the image data set and achieved higher AP@[.5 : .95] 
scores with a small number of epochs (Fig. 5) because it 
saves training time for new image types, is widely appli-
cable, and can be easily transferred to new applications 
for maize cob phenotyping. Importantly, the initial train-
ing set is not required for model updating. Our analy-
ses indicate that only 10–20 annotated new images are 
required and the update can be limited to 50 epochs. 
The updated model can then be tested on the new image 

dataset, either by visual inspection of the detection or by 
annotating some validation images to obtain a rough esti-
mate of the AP@[.5 : .95] score. The phenotypic traits can 
then be extracted by the included post-processing work-
flow, which itself only needs to be modified if additional 
parameters are to be implemented.

The runtime of the pipeline after model training is very 
fast. Image segmentation with the trained Mask R-CNN 
model and parameter estimation of eight cob traits took 
on average of 3.6  s per image containing an average of 
six cobs. This time is shorter than previously published 
pipelines (e.g., 13 s per image in [45]), although it should 
be noted that any such comparisons are not based on the 
same hardware and the same set of traits. For example, 
the pipeline for three dimensional cob phenotyping per-
forms a flat projection of the surface of the entire cob, 
but is additionally capable of annotating individual cob 
kernels and the total time for analyzing a single cob is 
5–10 min [68]. The ear digital imaging (EDI) pipeline of 
Makanza et  al. [40] processes more than 30 unthreshed 
ears at the same time and requires more time per image 
at 10 s, but also extracts more traits. However, this pipe-
line was developed on uniform and standardized images 
and does not involve a deep learning approach to make it 
generally applicable.

Application of the Mask R‑CNN pipeline for genebank 
phenomics
To demonstrate the utility of our pipeline, we applied it to 
original images of maize cobs from farmer’s fields during 
the establishment of the official maize genebank in Peru 
in the 1960s and 1970s (ImgOld) and to more recent pho-
tographs taken during the regeneration of existing maize 
material in 2015 (ImgNew). The native maize diversity of 
Peru was divided into individual landraces based mainly 
on cob traits. Our interest was to identify genebank 
accessions with high or low diversity of cob traits within 
accessions to classify accessions as ‘pure’ representatives 
of a landrace or as accessions with high levels of native 
genetic diversity, evidence of recent gene flow, or random 
admixture of different landraces. We used two different 
approaches to characterize the amount of variation for 
each trait within the accessions based on the eight traits 
measured by our pipeline. Unsupervised clustering of 
variance measure identified two groups of accessions that 
differed in their overall level of variation. The distribution 
of normalized variance parameters (Z-scores and stand-
ard deviations) within both groups indicate that variation 
in cob color has the strongest effect on variation within 
genebank accessions, suggesting that cob color is more 
variable that morphometric characters like cob length or 
cob diameter. This information is useful for subsequent 
studies, in terms of the relationship between genetic 
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and phenotypic variation in native maize diversity, the 
geographic patterns of phenotypic variation within lan-
draces, or the effect of seed regeneration during ex situ 
conservation on phenotypic diversity, which we are cur-
rently investigating in a separate study.

Conclusion
We present the successful application of deep learning by 
Mask R-CNN to maize cob segmentation in the context 
of genebank phenomics by developing a pipeline writ-
ten in Python for a large-scale image analysis of highly 
diverse maize cobs. We also developed a post-processing 
workflow to automatically extract measurements of eight 
phenotypic cob traits from cob and ruler masks obtained 
with Mask R-CNN. In this way, cob parameters were 
extracted from 19,867 individual cobs with a fast auto-
mated pipeline suitable for high-throughput phenotyp-
ing. Although the Mask R-CNN model was developed 
based on native maize diversity of Peru, the model can 
be easily used and updated for additional image types 
in contexts like the genetic mapping of cob traits or in 
breeding programs. It therefore is of general applicability 
in maize breeding and research and for this purpose, we 
provide simple manuals for maize cob detection, param-
eter extraction and deep learning model updating. Future 
developments of the pipeline may include linking it to 
mobile phenotyping devices for real-time measurements 
in the field and using the large number of segmented 
images to develop refined models for deep learning, for 
example, to estimate additional parameters such a row 
numbers or characteristics of individual cob kernels.

Materials and methods
Plant material
The plant material used in this study is based on 2,484 
genebank accessions of 24 Peruvian maize landraces col-
lected from farmer’s fields in the 1960s and 1970s, which 
are stored the Peruvian maize genebank hosted at the 
Universidad Agraria La Molina (UNALM), Peru. These 
accessions originate from the three different ecogeo-
graphical environments (coast, highland and rainforest) 
present in Peru and therefore represent a broad sample of 
Peruvian maize diversity.

Image data of maize cobs
All accessions were photographed during their genebank 
registration. An image was taken with a set of 1–12 maize 
cobs per accession laid out side by side with a ruler and 
accession information. Because the accessions were col-
lected over several years, the images were not taken 
under the same standardized conditions of background, 
rulers and image quality. Prints of these photographs 
were stored in light-protected cupboards of the genebank 

and were digitized with a flatbed scanner in 2015 and 
stored as PNG files without further image processing. 
In addition, all genebank accession were regenerated in 
2015 at three different locations reflecting their ecogeo-
graphic origin and the cobs were photographed again 
with modern digital equipment under standardized con-
ditions and also stored as PNG images. The image data 
thus consist of 1,830 original (ImgOld) and 1,619 new 
(ImgNew) images for a total of 3,449 images. Overall, the 
images show a high level of variation due to technical and 
genetic reasons, which are outlined in Fig. 8. These data-
sets were used for training and evaluation of the image 
segmentation methods. Passport information available 
for each accession and their assignment to the different 
landraces is provided in Additional file  1: Table  S5. All 
images were re-scaled to a size of 1000 × 666 pixels with 
OpenCV, version 3.4.2 [7].

We used two different datasets for updating the image 
segmentation models and evaluating their robustness. 
The ImgCross image dataset contains images of maize 
cobs and spindles derived from a cross of Peruvian lan-
draces with a synthetic population generated from Euro-
pean elite breeding material and therefore reflects genetic 
segregation in the F2 generation. The images were taken 
with digital camera at the University of Hohenheim 
under standardized conditions and differ from the other 
data sets by a uniform green background, a higher reso-
lution 3888 × 2592 pixels (no re-sizing), a variable orien-
tation of the cobs, orange labels and differently colored 
squares instead of a ruler.

A fourth set of images (ImgDiv) was obtained mainly 
from publicly available South American maize gen-
ebank catalogs and from special collections available as 
downloadable figures on the internet. The ImgDiv data 
vary widely in terms of number and color of maize cobs, 
image dimensions and resolution, number, position and 
orientation of cobs. Some images also contain rulers as in 
ImgOld and ImgNew.

Software and methods for image analysis
Image analysis was mainly performed on a workstation 
running Ubuntu 18.04 LTS and the analysis code was 
written in Python (version 3.7; [63]) for all image opera-
tions. OpenCV (version 3.4.2 [7]) was used to perform 
basic image operations like resizing and contour finding.

For Window-CNN and Mask R-CNN, deep learn-
ing was performed with the Tensorflow (version 1.5.0; 
[1]) and Keras (version 2.2.4; [10]) libraries. In Mask 
R-CNN, the framework [25] from the matterport imple-
mentation (https://​github.​com/​matte​rport/ Mask_
RCNN) was used and adapted to the requirements of 
the maize cob image datasets. Statistical analyses for 
evaluating the contribution of different parameters in 

https://github.com/matterport/
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Mask R-CNN and for the clustering of the obtained cob 
traits was carried out with R version 3.6.3 [54].

Due to the lack of previous studies on cob image 
analysis in maize genetic resources, we tested three 
very different approaches (Felzenszwalb-Huttenlocher 
segmentation, Window-CNN and Mask R-CNN) for 
cob and ruler detection and image segmentation. 
Details on their implementation and comparison can 
be found in the Additional file 2: Text, but our approach 
is briefly described below. For image analysis using tra-
ditional approaches, we first applied various tools such 
as filtering, water-shedding, edge detection and cor-
ner detection to representative subsets of ImgOld and 
ImgNew. These algorithms can be tested fast and easily 
on image subsets, however they are usually not robust 
towards changes in image properties (i.e. color, bright-
ness, contrast, object size) and require manual fine-
tuning of parameters. With our image dataset, the best 
segmentation results were obtained with the graph-
based Felzenszwalb-Huttenlocher image segmentation 
algorithm [15] implemented in the Python scikit-image 
library version 0.16.2 [66] and the best ruler detection 
with the naive Bayes Classifier, implemented in the 
PlantCV library [19]. The parameters had to be manu-
ally fine-tuned for each of the two image datasets.

To evaluate deep learning, we used a windows-based 
(Window-CNN) and a Mask R convolutional neural 
network (Mask R-CNN), both of which require train-
ing on annotated and labeled image data. Convolu-
tional Neural Networks [36] (CNNs) are known to be 
the most powerful feature extractors and their popu-
larity for image classification dates back to the Ima-
geNet classification challenge, which was won by the 
architecture AlexNet [35]. Generally, a CNN consists 
of 3 different layer types, which are subsequently con-
nected: Convolutional layers, Pooling Layers and Fully-
Connected (FC) Layers. In a CNN for cob detection 
the classes  ‘cob’ and  ‘ruler’ can be learned as a feature 
using deep learning, which provides maize cob feature 
extraction independent of the challenges in diverse 
images like scale, cob color, cob shape, background 
color and contrast.

Since our goal was to localize and segment the cobs 
within the image, we first used sliding window CNN 
(Window-CNN), which passes parts of an image to a 
CNN at a time and returns the probability that it con-
tains a particular object class. Sliding windows have 
been used in plant phenotyping to detect plant seg-
ments [3, 9]. The main advantage of this method is the 
ability to customize the CNN structure to optimize 
automatic learning of object features. Our implemen-
tation of Window-CNN is described in detail in Addi-
tional file 2: Text.

Since sliding window CNNs have low accuracy and 
very long runtime, feature maps are used to filter out 
putative regions of interest on which boxes are refined 
around objects. Mask R-CNN [25] is the most recent 
addition to the family of R-CNNs [21] and includes a 
Region Proposal Network (RPN) to reduce the number of 
bounding boxes by passing only N  region proposals that 
are likely to contain some object to a detection network 
block. The detection network generates the final object 
localizations along with the appropriate classes from the 
RPN proposals and the appropriate features from the fea-
ture CNN. Mask R-CNN extends a Fast R-CNN [20] with 
a mask branch of two additional convolutional layers that 
perform additional instance segmentation and return 
a pixel-wise mask for each detected object containing 
a bounding box, a segmentation mask and a class label. 
We tested Mask R-CNN on our maize cob image set to 
investigate the performance of a state-of-the-art deep 
learning object detection, classification and segmentation 
framework. The method requires time-consuming image 
annotation and expensive computational resources (high 
memory and GPU’s).

Implementation of Mask R‑CNN to detect maize cobs 
and rulers
The training image data (200 or 1,000 images) were 
randomly selected from the two datasets ImgOld and 
ImgNew to achieve maximum diversity in terms of image 
properties (Additional file 1: Tables S1, S8). Both subsets 
were each randomly divided into a training set (75%) and 
a validation set (25%). Both image subsets were anno-
tated using VGG Image Annotator (via; version 2.0.8 
[13]). A pixel-precise mask was drawn by hand around 
each maize cob (Additional file  1: Figure S2). The ruler 
was labeled with two masks, one for the horizontal part 
and one for the vertical part, which facilitates later pre-
diction of the bounding boxes of the ruler compared to 
annotating the entire ruler element as one mask. Each 
mask was labeled as "cob" or "ruler", and the annotations 
for training and validation sets were exported separately 
as JSON files.

The third step consisted of model training on multiple 
GPUs using a standard tensorflow implementation of 
Mask R-CNN for maize cob and ruler detection. We used 
the pre-trained weights of the COCO model, which is 
the standard model [25] derived from training on the MS 
COCO dataset [38], in the layout of resnet 101 (transfer 
learning). The original Mask R-CNN implementation was 
modified by adding two classes for cob and ruler in addi-
tion to the background class. Instead of saving all models 
after each training epoch, only the best model with the 
least validation loss was saved to save memory. For train-
ing the Mask R-CNN models, we used Tesla K80 GPUs 
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with 12 GB RAM each on the BinAC GPU cluster at the 
University of Tübingen.

We trained 90 different models with different param-
eter settings (Additional file  1: Tables S1, S6) on both 
image datasets. The learning rate parameter learningrate 
was set to vary from 10−3 , as in the standard implemen-
tation, to 10−5 , since models with smaller datasets often 
suffer from overfitting, which may require smaller steps 
in learning the model parameters. Training was per-
formed over 15, 50, or 200 epochs (epochsoverall) to cap-
ture potential overfitting issues. The parameter epochs.m 
distinguishes between training only the heads, or train-
ing the heads first, followed by training on the complete 
layers of resnet101. The latter requires more computation 
time, but offers the possibility to fine tune not only the 
heads, but all the layers to obtain a more accurate detec-
tion. The mask loss weight (masklossweight) was given 
the value of 1, as in the default implementation, or 10, 
which means a higher focus on reducing mask loss. The 
monitor metric (monitor) for the best model checkpoint 
was set to vary between the default validation loss and 
the mask validation loss. The latter option was tested to 
optimize preferentially for mask creation, which is usu-
ally more challenging than determining object class, 
bounding box loss, etc. The use of the minimask (mini-
mask) affects the accuracy of mask creation and in the 
default implementation consists of a resizing step before 
the masks are forwarded by the CNN during the training 
process.

The performance of these models for cob and ruler 
detection was evaluated by the IoU (Intersection over 
Union) score or Jaccard index [29], which is the most 
popular metric to evaluate the performance of object 
detectors. The IoU score between a predicted and a 
true bounding box is calculated by

The most common threshold for IoU is 50% or 0.5. 
With IoU values above 0.5, the predicted object is con-
sidered as true positive (TP), else as a false positive 
(FP). Precision is calculated by

The average precision (AP) was calculated by aver-
aging P over all ground-truth objects of all classes in 
comparison to their predicted boxes, as demonstrated 
in various challenges and improved network architec-
tures [14, 26, 57].

Following the primary challenge metric of the COCO 
dataset [44], the goodness of our trained models was 

IoU =
Area of Overlap

Area of Union

P =
TP

TP+ FP

also scored by AP@[.5 : .95] , sometimes also just called 
AP, which is the average AP over different IoU thresh-
olds from 50 to 95% in 5% steps. In contrast to usual 
object detection models where IoU/AP metrics are 
calculated for boxes, in the following IoU relates to 
the masks [55], because this explores the performance 
of instance segmentation. We performed an ANOVA 
with 90 model results scores to evaluate the individual 
impact of the parameters on the AP@[.5 : .95] score. 
Logit transformation was applied to fit the assump-
tions of heterogeneity of variance and normal distri-
bution (Additional file  1: Figure S4). Model selection 
was carried out including parameters learningrate 
( 10−3, 10−4, 10−5 , epochs.m (1:only heads, 2:20 epochs 
heads, 3:10 epochs heads; for the rest all model layers 
trained), epochsoverall (15, 50, 200), masklossweight 
(1,10), monitor (val loss, mask val loss) and minimask 
(yes, no). Also all two-way interactions were included 
in the model, dropping non-significant interactions 
first and then non-significant main effects if none of 
their interactions were significant.

These results allow to formulate the following final 
model to describe contributions of the parameters on 
Mask R-CNN performance:

where µ is the general effect, bi the effect of the i-th mini-
mask, vj the effect of the j-th overall number of epochs, 
kh the effect of the h-th training set size, the interaction 
effect between the number of epochs and the training set 
size and eijh the random deviation associated with yijh . 
We calculated ANOVA tables, back-transformed lsmeans 
and contrasts (confidence level of 0.95) for the signifi-
cant influencing variables. As last step of model training, 
we set up a workflow with the best model as judged by 
its AP@[.5 : .95] score and performed random checks 
whether objects were detected correctly.

Workflow for model updating with new pictures
To investigate the updating ability of Mask R-CNN on 
different maize cob image datasets, we annotated addi-
tionally 150 images (50 training, 100 validation images) 
from each of the ImgCross and ImgDiv datasets. For 
ImgCross, the high resolution of 3888× 2592 pixels was 
maintained, but 75% of the images were rotated (25% by 
90, 25% by 180, and 25% by 270) to increase diversity. The 
corn cob spindles on these images were also labeled as 
cobs and the colored squares were labeled as rulers. The 
ImgDiv images were left at their original resolution and 
annotated with the cob and ruler classes.

The model weights of the best model (M104) obtained 
by training with ImgOld and ImgNew were used as initial 

yijh = µ+ bi + vj + kh + (bk)ih + eijh
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weights and updated with ImgCross and ImgDiv images. 
Based on the statistical analysis, optimal parameter lev-
els of the main parameters were used and only the net-
work heads were trained with a learning rate of 10−3 for 
50 epochs without the minimum mask. Training was per-
formed with different randomly selected sets (10, 20, 30, 
40, and 50 images) to evaluate the influence of the num-
ber of images on the quality of model updating. For each 
training run, all models with an improvement step in val-
idation loss were saved, and the AP@[0.5:0.95] score was 
calculated for each of them. For comparison, all combi-
nations of models were also trained with the standard 
COCO weights.

Statistical analysis of model updating results
To evaluate the influence of the data set, the start-
ing model, and the size of the training set, an ANOVA 
was performed on the data set of AP@[.5 : .95] from all 
epochs and combinations. Logit transformation was 
applied to meet the assumptions of heterogeneity of 
variance and normal distribution. Epoch was included 
as a covariate. Forward model selection was performed 
using the parameters dataset (ImgCross, ImgDiv), start-
ing model (COCO, pre-trained maize model), and train-
ing set size (10, 20, 30, 40, 50). All two-way and three-way 
parameter interactions were included in the model. 
Because the three-way interaction was not significant, 
the significant two-way interactions and significant main 
effects were retained in the final model, which can be 
denoted as follows:

ANOVA tables, back-transformed lsmeans and p-val-
ues (Additional file 1: Tables S7 and S8; confidence level 
of 0.95) for the significant influencing variables were 
calculated.

Post‑processing of segmented images for automated 
measurements and phenotypic trait extraction
Mask R-CNN images are post-processed (Fig. 9) with an 
automated pipeline to extract phenotypic traits of inter-
est, being either relevant for maize yield (i.e. cob meas-
urements) or for genebank phenomics (i.e. cob shape 
or color descriptors to differentiate between landraces). 
The Mask R-CNN model returns a list of labeled masks, 
which are separated into cob and ruler masks for subse-
quent analysis. Contour detection is applied to binarized 
ruler masks to identify individual black or white ruler 
elements, whose length in pixel is then average for ele-
ments of a ruler to obtain a pixel value per cm for each 
image. Length and diameter of cob masks are then con-
verted from pixel into cm values using the average ruler 
lengths. The cob masks are also used to calculate the 

yijh = µ+ ci + nj + kh + (cn)ih + (nk)jh + eijh

mean RGB color of each cob. In contrast to a similar 
approach by Miller et al. [45], who sampled pixels from 
the middle third of cobs for RGB color extraction, we 
used the complete cob mask because kernel color was 
variable throughout the cob in highly diverse image data. 
We also used the complete cob mask to extract cob shape 
parameters that include asymmetry and ellipticity similar 
to a previous study of avian eggs [58], who characterized 
egg shape diversity using the morphometric equations of 
Baker [6]. Since our image data contained a high diversity 
of maize cob shapes we reasoned that shape parameters 
like asymmetry and ellipticity are useful for a morpho-
metric description of maize cob diversity. For demonstra-
tion examples of symmetrical/asymmetrical and round/
elliptical cobs please refer to Additional file 1: Figure S3. 
Overall the following phenotypic traits were extracted 
from almost 19,867 cobs: Diameter, length, aspect ratio 
(length/diameter), asymmetry, ellipticity and mean RGB 

Fig. 9  Post-processing of segmented images using a Mask R-CNN 
workflow that analyses segments labeled as’cob’ and’ruler’ to extract 
the parameters cob length, diameter, mean RGB color,and shape 
parameters ellipticity and asymmetry. Cob length and diameter 
measures in pixels are converted to cm values by measuring the 
contours of single ruler elements
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color separated by red, green, blue channels. Our pipe-
line returned all cob masks for later analysis of additional 
parameters as .jpg images.

Quantitative comparison 
between Felzenszwalb‑Huttenlocher segmentation, 
Window‑CNN and Mask R‑CNN
For quantitative comparisons between the three image 
segmentation methods, a subset of 50 images from 
ImgOld and 50 images from ImgNew were randomly 
selected. None of the images were included in the train-
ing data from Window-CNN or Mask R-CNN, and the 
subset is unbiased against the training data. Therefore, 
overfitting issues were avoided. True measurements of 
cob length and diameter were obtained using the anno-
tation tool via [13]. Individual cob dimensions per image 
could not be directly compared to predicted cob dimen-
sions because Felzenszwalb-Huttenlocher segmenta-
tion and Window-CNN often contained multiple cobs 
in a box or certain cobs were contained in multiple 
boxes. Therefore, the mean of the predicted cob width 
and length per image was calculated for each approach, 
penalizing incorrectly predicted boxes. Pearson correla-
tion was calculated between the true and predicted mean 
diameter and length of the cob per image separately for 
the ImgOld and ImgNew sets.

Unsupervised clustering to detect images with high cob 
diversity
To identify genebank accessions with high phenotypic 
diversity in ImgOld and ImgNew images, we used two 
different unsupervised clustering methods. In the first 
approach, individual cob features (width, length, asym-
metry, ellipticity, and mean RGB values) were scaled after 
their extraction from the images. The Z-score of each cob 
was calculated as Zij =

xij−Ẋj

Sj
 , where Zij is the Z-score of 

the i th cob in the j th image, xij is a measurement of the i 
th cam of the j th image, and Ẋj and Sj are the mean and 
are the standard deviation of the j-th image, respectively. 
The scaled dataset was analyzed using CLARA (Cluster-
ing LARge Applications), which is a multivariate cluster-
ing method suitable for large datasets, using the cluster R 
package [39]. The optimal cluster number was deter-
mined by the average silhouette method implemented in 
the R package factoextra [33].

In the second approach, we used the standard deviations 
of individual measurements within each each image ( Sj ) as 
input for clustering. The standard deviations of each image 
were centered and standardized so that the values obtained 
for all images were on the same scale. This dataset was then 

clustered with k-means and the number of clusters, k , was 
determined using the gap statistic [61], which compares the 
sum of squares within clusters to the expectation under a 
zero reference distribution.
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